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Abstract

This paper provides a formal analysis of a powerful mapping technique known as scatter decomposi-
tion. Scatter decomposition divides an irzegular computational domain into a large number of equal sized
pieces, and distributes them modulatly amoug processors. We usc a probabilistic model of workload in
one dimension to formally explain why, and when scatter decomposition works, Our first result is that if
correlation in wotkload is a convex function of distance, then scattering a more finely decomposed domain
vields a lower average processor workloau variance, Our second result shows that if the workload process
is stationary Gaussian and the correlation function decreases linearly in distance until becoming 2ero
and then remains zero, scattering a more finely decompoved domain yields a lower expected maximum
processor workload. Finally we show that if the correlation function decreases linearly across the entire
domain, then among all mappings that assign an equal number of domain pieces tu each processor, scat-
ter decomposition minimizes the tverage processor workload variance. The dependence of these results
on the assumption of desressing norrelation is illusteated with situations where a coarser granularity
actually achieves battcr load balance.
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1 Introduction

Scatter decomposition (1), (also described as modular mapping [4]) i3 an effective method for parallelizing
a large class of irregular scientific programs that are tied to physical domains. Examples include a wide
variety of techniques for numerically solving time dependent partial differential equations, and other, less
nuinerical domain-oriented simulations. Scatter decomposition divides the domain into a set of rectangular
regions with the same spatial size and geometry. ‘The regions are labeled using Cartesian coordinates, and
are mapped to processors by applying the mod function to the label in each coordinate. Fer example, Figure
1 shows how a two dimensional irregular grid for a PDE is decomposed into strips (marked by the heavy
lines) and assigned to processors. The execution of all workload related to a subregion is a basic unit of
schedulable work which we call a cluster. A cluster’s granulacity is controlled by the parameters defining the
region size, in this case the strip width,

Scatter decomposition's success lies in its ability to balance workload without ever actually analyzing it.
Any region of high workload tends to be subdivided and distributed among processors. Scatter decomposition
is a technique applied to many problems in many contexts (1, 2, 4, §, 9, 11, 14, 17). Its success has been
explained informally in (1) and (4], by appealing to the physics and numerics of many scientific computations.
WE  these explanations suffice for most practitioners, the literature lacks a full formal analysis of why seatter
de s¢ition balances workload. ‘This paper provides some such analysis, identifying model assumptions
under whicl scatter decomposition can b2 expected to effectively balance load. As such, rur work is a
necessary prerequisite for any future forinl treatment of the very important problem of managing the
inherent tensions between load imbalance and communication costs in a scatter decomposition.

The object of this paper is to construct and analyze a performance model to explain when and why seatter
decomposition works. The model is based on a number of simplifying assumptions to promote tractability.
As such, it should not be viewsd as a model that accurately predicts performance quantitatively. Rather,
it should be viewed as a model that explains performance qualitatively, Specifically, we model workload in
a one dimensional domain as a continuous second-order stationary process. This means that we associate
a random workload with every point in the domain, assume that the mean workload at every point is the
same, assume that the workload variance at every point is the same, and assume that the covariance batween
the workloads at any two points is uniquely determined by their distance. The model takes the domain ‘o
be divided into some n = 24 clusters of equal size, mapped modularly onto P = 27 processors. Throughout
this paper we take P to be fixed, and d > p. The degree of the decomposition is defined to be d. Given one
scatter decomposition, another of higher degree ca= be constructed by splitting each cluster into two, then
by modularly mapping the resulting set of clusters.

We derive three nain results, each of which has a different set of assumptions concerning the correlation

function.




1. Assumplion: ‘The correlation function is convex. Result: Increasi. | the degree of a scatter decompo-

sition does not increase the common processor workload varinnce.

2, Assumplions. The workload process is stationary and Gaussian. The correlation function decreases
linearly until reaching zero, then remains zero (an ¢lbow function). Result:  ‘There exists a degeree
do, such that if dg < dy < dy, then the expected maximum processor workload under a scatter
decomposition of degree dy is no larger than the expected maximum processor workload under a

scatter decomposition of degree d).

3. Assumption. The correlation function decreases linearly across the entire domain, Resull; For any
number of clusters 2¢, among all mappings that assign 2°% clusters per processor the modulaz mapping

minimizes the average processor workload variance.

Performance ultimately is measured in terms of finishing time, so that the expected load of the most
heavily loaded processor is an appropriate metric. One of our results addresses this metric directly. Average
processor workload varinuce is a secondary measure, although intuition does suggest that decreasing the
ariance while keeping the m:an constant will decrease the expected maximum. Consequeatly, all these
results confirm our intuition that modularly mapping increasingly finer grained workload leads to better
load balance. It should be noted that increased comnumicalion.ovcrhead is the price paid for this balance,
and is a cost we do not include in this model. One should not interprat these results as saying that better
overall performance can always be achieved by increasing the degree. For a given domain, there will be an
optimal degree that balances the conflicting goals of low communication costs and good load balasce.

A briel analysis of scatter decomposition can be found in [15). However, that analysis assumes statistical
independence between all cluster workloads, and seems to consider the effects of scatter decomposition ...
a given architecture as the problem size is increased. As such it is an inappropriate model for studying the
effects of changing the mapping of a single given probicin. Treatments of other problems have used stochastic
models of v.urkload to estimate the expected finishing time, but invariably those models concern statistically
independent workloads, e.g. the analyses in [3] and [6). These results are inadequate for analyzing scatter
decomposition. When all workload is independent, then aggregated workload is independent, and there is
no performance benefit to be gained by scattering. Scatter decomposition is successful precisely because the
workload is not independent. Our contribution is to propose and analyze a model that includes workload

correlation, and explain why increasingly finer partitions mapped modularly tend to balance the load better.




2 Analysis

In this section we study a probabiliatic model of workload, and the performance of different mappmings. For
the sake of simplicity we vonstrain our model to be one~dimensional. Thia assumption docs not negate
the utility of the model; any nmlti-dimensionsl problem pa-titioned into hyper-atzips can be viewed as a
one-dimensional problem. Suzh partitions greatly siinplify the srogramming needed (o exchange information
between processors. In fact, our experience in mapping & Iand-buttls simulation using scatter decomposition
was that steip partitions minimized the execulion time [10). Tls wna w0 our experience in mapping a
regular scientific code onto the Intel iPSC/1 (16},

Our analysis concerns the elfect of scatter decompesition on Jexd balany -, 2w the sbesnce of commu.
nication or synchronization costs. By understanding hww lwd balance in isolation is wflected Ly the de-
composition/mapping decisions, we are better able to undarstand the tension betwean load imbalance aml
communication/synchronization overheads. The model we use iz intended to be descriptive, rather than
predictive; the analysis is qualitative rather than quantitative. We doubt that the end benzfits of fitting a
madel to performance data will justify the costs of doing so, Nevertheless we feel there Is worth in formally
affirming the intuition behind scatter decomposition.

2.1 When and Why Scatter Decomposition Works

Qur model explains the success of scatter deccmposition by showing that it induces correlation hetween
processors' workloads. To see the performancs benefits of correlated workloads, imagine that a random
workload is generated and partitioned so that the dame amount of work is assigned o every processor, A
processor's workload is random, but all procossors always finish at the same time, because their worklonds
are perfectly correlated. This situation is optimal, because all processors are busy all the time. Now
imagine that the workload at every point is statistically independent of any other. No matter what the
domain decomposition or mapping, processor warkloads are statistically independent. In fact, the sxpected
maximum processor workload is the same regardless of granularity, so long as the same volume of Jomain
is assigned to each processor, The “ideal” of random but highly correlated processor workloads cannot be
achieved in this artificial scenario.

Scatter decomposition works because irregular workloads ara not statistically independent: high workload
tends to appear in contiguous regions. A sufficiently fine-grained decomposition will split the region up,
modular assignment will spread its workload around. ‘The contribution of that region to one processor’s
workload is highly correlated with the contribution of a nearby region to a different processor’s workload. If
the underlying workload is highly correlated in nearby regions, then scatter decomposition induces correlation

between processors’ workloads. We have observed this phenomenon in our own experiments with a one-




dimensional fivi” flow computation using adaptive geidding [11). ‘The fAuids problem exhibits frregular grids
similar to these in Fignre 1.

Far a given problem, the sample autocorrelation function [12)(p. 437) is o statistical estinate of correlation
between point workloads, as a function of the distanze between them. Autocorrelations range between )
and -1; the larger tha autocorrelution. the mere similar ¢the workloads of two points st a given distance terd
1o be. Zero correlation implias statistical independence; inereasingly negative correlations imply increasing
dizsimilarity between workloads. Figure 2 shows the samnple autocorrelation function at one tiine-step in a
fiuid flow computation. Not only does correlation diminish as a function of distance, it can reasonsbly be
modeled a3 a convex “elbow” function da(2) = o max{0,1 = ot} over an appropriate range of ¢, snd some
a 2 0. This corresponds nicely with two of our tesults, one of which sssumes elbow correlation, the other of
which assumnes a convex correlation funcilon,

Theee are situations whera seatter decomposition will not woek well. Coansider » one dimensional domain
diseretized into 1000 points, nmmbered betwean 0 and 999, to be mapped onto ten processors. Randomly
choose some “base” number & € [0,99), and imagine that every hundredth point beginning with & has a
computational cost of 1000, while all othier points have a computational cost of 1. If one evenly divides the
domain into ten subregions and maps thesn modularly, every processor hias 1099 units of computation to
exactite, Scatter a decomposition of twenty subregions, and half the processors each have a computational
cost of 2098, while the other half each have a cost of 100. Modulacly assign each point individually, and
procesior (b med 10) has a cost of 10090, while every other processor has a cost of 100, In this situation
mapping increasingly finer-grained workload leads to decreasing performance. Due to §'s randomness this
workload modal iz stochastic, and is second-order stationary. Two points at a distance 100m form = 1,...,9
will always have the same workload. The correlation function at all distances 100m consequently has value
one. It has some fixed smaller value for all other distances. The principle reason this problem defeats fine-
grained scatter decomposition is the periodicity. One should be extremely careful using scatter desomposition
in the presence of strong periodie behavior, if there is any chance that the periodicity of the modular mapping

can align with the periodicity of workload. ‘The assumptions of the models we study do not admit periodicity.

2.2 Model Preliminaries

\We consider the behavior of a computation over a real line interval, divided into n clusters, and mapped onto
P procescors. Both n and P are taken to be powers of two, and n > P, We are interested in the average
processor workicad variance, and in the expected workload of the processor that takes the loi.gest time to
complete. Without loss of generality we take Lhic real interval to be {0,1]. Assume that every point p € [0,1)
has a certain work intensity W(t). The time required to process [a,b) is the integral of 1¥(t) fromt =a to

t = b. We assume that the intensities 1 (t) are unknown, but we are willing to model our uncertainity by




sssuming that 117(¢) is a random variable, and that 19(t) can be viewed a3 & second-order stutionary process
{13) over ¢ € {0, 1). ‘Thus we suppase that E[1¥(1)] = u for all t € (0. 1), that Var[t¥(t)) = ¢* for sl ¢ € [0, 1],
and that Coc{1'(€), 18°(s)] depends enly on [t = s|. To emphasize this point we will denote the covariance
function as Cou(lt ~ sl). These asamnptions are reasonable if we are unwilling or unable to diffsrentinte
betwean tite ikely behavior of the computation at t and at & We do not sssumme that 1P(¢) = W(s), we
simply agsume that we have the snme degree of vacertainity sbout 11() and 11°(s).

The exceution time for [a,8) is

§
Tlob) = / () d.

T(a. ) hss mean value (b= o)u. ‘The vatisnee of 7(0.,8) iz

]

Var[T'(0.5)) ET(0,8)) = (4 = a)%s?

= kE [(j{: (1) dl)(’/: W(s) ds)] (b= a)?y?

i

/; _/s E(v()(s) dtds = (b=a)p?

ol
J{ /ﬂ Coulle—1]) dtds — (b= a)%s. (1)

Following a decompasition into n ¢lusters, - * cluster’s workload is T(i/n, (i + 1)/n), and is denoted
as ¢i(n). The random veetor of cluster workloads is denoted C(n) =<eg(n)iee tnm1{n) >.
We sre interested in the covariance matrix o for the cluster we.Xloads, For i # j we have

{1 p(i41)]a
Coule(n)y¢;(n)] = (o2 = / / Coult — 8) dt ds, @)
i ln
Var(ei(n)] is simply Var{T(i/n,(i + 1)/n)), given above. The sequence co(n),cy(n),...,cn1(n) is second-
order stationary, a fact easily deduced from equations (1) and (2). To emphasize this we define the function
-3
8(lj = i, n) = Covfei(n), ¢j(n)).
Note that ¢(0,a) is a cluster's variance,

An assignment of clusters to processors is described by a P x n assignmen? matrix whose ij-th entry
is 1 if ¢;(n) is assigned to processor i, and is 0 otherwise. Given assignment matrix A, the multiplication
AC vields a P x | random vector whose jth component is the sum of the execution times of all ¢lusters
assigned to processor §. The vector of mean processor loads is the matrix-vector produst Afi,, where fi, is
the n element vector with g/n in each coordinate. The covariance matrix of AC is the product AcZ AT,

where A7 is the transpose of A. The overall execution time is the maximum processor execution time, or
max{(AC)7}. This quantily is random.




For any p dcessor P, let A(i) denote the set of clusters assigned to it under A, and let Li(A,n) be P's
random workload. By definition the variance of Li(A,n) is given by
Var[Li(An)] = (.-lqéAT)“
= 2 #(0n)+ P $(1j = k). ©)
¢;(nleALd) <Cey{nden(n)> EA()X AL

‘The first component of this expression is the sum of vasiances of all clusters assigned to Pi. The second
component i3 & sum of cluster covariance terms (we will cxll these ce terms), that depends on the assignment.

Similagly, the covariance between processors Li(A,2) and L;(A,n) Is given by a sum of cc terms:
Cov[Li(.4n), Ly(A,n)) = P $(lk = m|,n) ()

<an(nlieain)> €A% ALS)

‘The sum of ull cluster covarinnce matrix terms always equals the sum of all processor vorkload variances

and covariances!

A=l n-‘i Pal Pe}
Yo Y et = Y Yo (Aek ATy
i=0 j=0 =0 j=0

This implies a balance between processor workload variances and covariances (and hence correlations); if by
changing A we reduce the average processor workload variance, then we are increasing the average inters
processor workload correlation.

The indices of the sums (3) and (4) have gnecial structure when A describes & modular mapping. We
know that if ¢;(n) and ex(n) are assigned to the same processor, then [j — k| is a multiple of P. Under a
modular mapping each processor will have n/P ¢lusters. Among these there are n/P - 1 pairs of clusters
whose indices are exactly P apart, n/P — 2 pairs whose indices are exactly 2P apart, and so on. Since n and
P determine the specifics of the mapping we may drop the notational dependence of Li(A,n) on A. Under
the modular mapping we may write the common processor workload variance as

{(n/P)~1
Var(L{n)] = (n/P}$(@n)+2 3 ((n/P) = k)$(kP.n). (5)

k=)

To consider processor workload covariance under a modular assignmem take i < j, and consider a
cluster cqa(n) assigned to processor Pr. It has cc terms with all processor P; clusters ¢,u(n) such that
la—m]mod P=j—ior|o~m|mod P=P—j+i There are (n/P)— k) cc terms arising from clusters
whose indices are kP + j — i apart (for k = 0,...,(n/P) — 1); there are ((n/P) — k) cc terms arising from
clusters whose indices are kP — j + i apart (for k = 1,...,(n/P) - 1). We may therefore write

{n/P)~1 {n/P)-1
CovlLi(n), Li(n)] = Y. ((n/P)—k)(kP+j—in)+ D ((n/P)=k)$(kP—j+i,n)
k=0 k=)

1 this conservation law proved to be invaluable when debugging detailed expressions for the processor workload variance and
covariances, e.g. (12) and (13).

A




(o] P)=1
= (n/P)(=im)+ 3 ((0/P)=K)(kP 4 j=ivn) +

kal
{n]P)=1
Y (#/P) = k)pikP = j 4 iim). (6)
km}

2.3 Decrcasing Workload Variance

Under very general asswmptions one ¢an show that increasing the degree of a scatter decomposition reduces
the common processor workload variance. The necessary assumplions are that the workload process be
second-order stationary, and that its covariance function be convex.

‘The first step is to show that ¢(]5 — i|yn) is & convex {unction of |i — i| over the range 1,2,....n=1.
‘Towards this end assume that = > 1/n and define

1/n prdd/n
Inz) = E /o / W()W(t) dt ds
r
tn pxdlfn
/ / Cou(t— s dl ds
0 z

i/n o) o
f [ / Cov(t ~ ) dt— / Coult - 3) dt] ds
0 x z4l/n

‘Taking the derivative with respect to x we find that

9, 1/
3z (n,z) = -/o (Cou(z + 1/n — 8) — Cov(z — 3)) ds.

The difference being integrated increases in z due to Cou(t) convexily, implying that the derivative of I{n, z)
with respect to x increases in z—one characterization of a convex function. By stationarity Covci(n), cj(n)) =
Covleo(n), cjj-ij(n)]; furthermore Cov[co(n), ¢jy.-y(n)) = I(n, |j = il/n). Consequently Coufei(n),cs(n)] is a
convex function of |i — i] once |7 —i] > 1 (it may indeed be convex over the entire range, but that fact has
not, been shown, and is not needed).

We are interestod in the effects of moving from a scattcr decomposition with degree d — 1 to one with
degree d. To analyze these effects we make the following observation. Consider a domain partitioned into
n = 24 clusters, which is mapped by modularly assigning pairs of clusters: co(n) and cy(n) are assigned to
processor 0, ca(n) and ca(n) are assigned to processor 1, and so on. This mapping is dentical to the scatter
decomposition of degree d— 1; the pair of clusters cg(n), c;(n) viewed from the 4 degree mapping is the same
as the single cluster cg(n/2) viewed from the d—1 degree mapping. We will show that the modular mapping
with degree d — 1 produces processor variances that are no smaller than those of the modular mapping with
degree d.

Split each cluster ¢;(n/2) into two equal sized clusters. The sum of the two split cluster variances plus




twice their covariance must equal the variance of ¢;(1n/2). ‘That is,
(0, 1/2) = 24(0, n) + 28(1,n). (7)

Similacly, toke two clusters ci(n/2) and ¢;(n/2), and split each into two equal sized clusters. The total
covariance between the four split clusters must equal the covariance between the two unsplit clusters. Thus

¢(lJ = ilin/2) = 26(2]} = il\n) + $(2]5 = ¥+ 1un) + $(2]j = i| = Lun). (8)

Note that the index values must donble when taken with respect to n rather than n/2 slusters.
Substituting the right-hand-sides of equations (7) and (8) into equation (5) and working through the
wpebra, we find that

(n/(2P))-1
Var{L(n/2)) = (n/P)3(0,n) +{n/P)e(,n) +2 3,  ((n/P)=2k)3(2kP,n)+
ka)
(n/(21)) =3

ST ((n/P) = 2) [$(2kP + Ln) + $(2kP = 1,n)].
k=il

Using this expression and (5), we compute the difference Var{l(n/2)] = Var[L(n)). All terms involving
¢(2k P, n) cancel, for k = 0,...,0/(2P) = 1. Each remaining term from Var[L(n)] has the form 2((n/P) -
2% = 1)@((2k + 1) P, n), for k = G,...,n/(2P) = 1. We split each such term into the sum (n/P — 2k)3((2k +
1P )+ (n/P = 2k < 2)3((2k + 1) P, n), and pair these with Var{L(n/2)] terims as follows'
(n/(2P))-1
Var(L(n/2)) = Varll(n)] = ),  ((n/P = 2k)$(2kP + 1,n) = 3((2k + 1) P, 1)) ~
=0 (n/P =2k =2)(¢((2k + 1)P,n) = &((2k + 2)P = 1,n)) ). (9)

One characteristic of a convex function g is that for fixed y the difference g(z) — g(z + y) is a decreasing
function of z. Every two terms we have paired differ in then index arguments by exsctly P -1, eg,
$(2kP + 1,n) and $((2k + 1)P,n). Since ¢ is a convex function of the index argument once the index is at
least 1, we have for every k

$(2kP + 1,n) - 3((2k + 1)P,n) > ((2k +1)P,n) ~ 3((2k + 2)P = 1,n).

The left-hand-side expression in this inequality is weighted more heavily in equation (9) than is the right-

hand-side expression. It follows that Var[L(n/2)) = Var[L(n)] > 0, proving cur first result.

Theorem 1 Suppose the workload process 1V(t) is second-order stationary with a conver covariance func-

tion. Then increasing the degree of a scalfer decomposition does not increase the processor workload variance.




2.4 Decreasing Expected Maximum Workload

Next we demonstrate citcumstances where increasing the degree of a scatter decomposition reduces the
expected vorkload of the most heavily loaded processor. ‘The argument i «o show that under sppropriate
assumptions the correlation between sny two processors' worklowds increases as the degree increases, We
then cite a result from the literature proving that the expected maximum decreases in this situation.

We assune that the workload process (11(1)) is n stationary Gaussian process? (7). Additivity properties
of the Gaussian then ensure that the vector of n clusters has a jointly normal distribution (7)(Chapter 6) and
that under any assignment, the processors' workloads are jointly normal. We also assume that the correlation
function is Cou(t) = a®max{0,1 — at}, where a = 2¥/m, > 1 for some integers v, mq 2 0. The restriction
on ¢ is used to simplify certain caleulations. § = 1/a is the sinallest distance t at which Cou(t) = 0. Our
results apply when the degree is lacge enough so that subinterval {0,8) is partitioned into at least P = 27
clusters, If the degree is d, then the number of clusters in [9,8] is 624, Now let dy be the least d such that
624 mod 27 = 0. Equivalently, do is the least integer d such that mq,297P=Y is an integer. Clearly do € p-v.
Our results apply when the degree i3 at Jeast dy.

We can compute functio..al forms for ¢(|j — i|yn) given this explicit definition of Cou(t). Performing the
integration given by (2) one determines that

L(n=olj=il) if]j—i] <én

$(li=ilin) = %3 i]j—il=6n . (10)
0 if]j=i]> én

These calculations take advantage of the fact that & is a multiple of 1/n. The variance of a cluster is
determined by evaluating (1), yielding

2

o
é(0,n) = -"—:|-(1| —afd). (11)
Given equations (10) and (11) we ¢can compute processor workload variance and covariance under seatter
decomposition. General expressions for these quantities are given by (5) and (6). For large values of k, some
terms in those sums vanish, being zero. Our assumption that the scatter dzcomposition has degres dy or
Inrger ensures that terms which vanish are easily characterized. and that those clusters whose indices are

exactly én apart are assigned to the same processor. All ¢(kP,n) terms in (5) vanish for k > §n/P; we have

J(kPyn) = a2a/(6n3) for k = &n/P. We may rewrite the vuriance as
(§n/P)=1

Var[L(n)) = (n/P)I-2-2L2) (n 0/3) Z ((n/P B2 (n — akP)) +(n/P = 5n/P) (%)

Inote that this assumption is stronger than we have used so far, due both to stationarity rather than second-order stationarity,

and due to the assumption of a specific workload distribution
3This is not the case for smaller degrees. A large number of special cases must be constructed and analyzed. This task

seemed Lo us to be more tedious than is warranted by the anticipated correspondingly stronger result,




= o (CER sl Los), (12)

o T2 Inep

Calculation of this equality Is much s apdificd with the use of a symbelic mathemnatics package.

The processor worklosd covaciangé i3 similarly handled. Azsume that § < j. k = 8n/P sgain delineates
whire & tetmg vanish: (kP4 j=in) =0 focall k > §n/P, and §(kP =i+ §,0) =0 for all k > §n/P. We
may rewrite (0) 13

(in)P)=1

3 - y
Coclli(u) Ly(n)} = (n/l’)g{i(ﬂ ~oli=i+ Y Un/P)-K)Z (n o(if’” N,
km})

falP o

E ((n/P) - k)":(" - o(i:) - i)

Am)

§=843 1 .

= g’( h;——/ »;-3'7—2}37;-). -

The corzelation between Li(n) and Lj(n) is the ratio Cou(Li(n), Lj(n))/Var{l(n)}. For all d 2 do we
obtain the coreelation waing (313) and (12), and can treat the ratio as a continuous function of n. It is
interciting 1o note that as n increases the correlation approache; unity, This supports our intuition that
pattitioning the domain into increasingly finer clusters and mapping them modulaely induces correlation
between processor workloads. In fact, the tendency towards unity is monotonic, “Taking the derivative with
respect to nt we find that the derivative is positive if

(473~ 2673)(5 = i) +26/9—=2/3 > 0.
This inequality holds, since (4/3 ~ 28/3) > 2/3. Consequently, for all n = 24 > 20 we must have
Cou{Li(2n), Ly (20))/V ar[L(2n)) > CovlLi(n), Ly(n)}/Var(Lin)).

Next we use this relationship (o analyze the expected maximum processor workload.
The following result is based on the Normal Comparison Lemma [8](p.81) and is the key to our observa.

tions concerning the expected maximum processor workload.

Theorem 2 (Leadbetter ot al.) Let &,...,& be standardized jointly normal random variables, and let
N0:...4 Nk be standandized jointly normal random variables, such that Cov(£:, &) < Cou(, 1) for each i,j,
i £ 5. Then for every u,

Pr{ma. o,...,&} S u}} € Pr{max{m,...,m} < u}},

and hence

E[max{&o,...,&}] 2 E[max{m,...,m}).
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The standardization of a random varinble X' is the scaled random varisble Z = (X' — m)/s, where m
and $ aze X's mean and standard daviation, respectively. The mean of & standardized random varinble is
zeto and its varisnce is one; the covariance between two standardized random variables is the cotrelation
betrveen their corresponding unatandardized forms, Let Zy(n) be the standardized workload of proceasor P
given a donmin of n clusters. Cov[Zi(n), Zj(n)] = Cov(Li(n), Ly(n)}/Var[L(n)), which we have shown to be
increasing in n. If i > n (equivalently, if one seatter decomposition has higher degree than ancther), then

E[ﬂ\M(ZQ(N). N Zp..; (ﬂ)}] 2 E(m&!{z;;(ﬂ). eny Zp...;(r.t))]. (H)
‘Che expected maximum workload is

E{max{Lo(n)i. .. Lpar(n)}) E[_ max {L;(n)-&-Var[l,(n)]mzz(u)]]

05is =1
1/2
nlP o+ VarlG) L El guns (7))

Theorem 1 shows that Var[L(n)] 2 Var[L(2n)); this along with inequality (14) proves our second result,

Theoram 3 Let {1¥(t)) be a stationary Gaxssian process, with a covariance function Cou(t) = o max{0,1—
at), where o = 2¥/mg 2 1 for some positive integers ma, v. Lel there be 20 processors, and let do be the
least integer d such that mg29=2=Y is an inleger. [fdy > dy > dy, then the expecled marimum processor
workload of a scatler decomposilion- with degree dy 18 no greater than that of a scatler decomposition with
degree dy.

Q

2.5 Minimization of Average Workload Variance

Our final result gives conditions where for a given n, among all “balanced” assignments—those placing n/P
clusters per processor—the modular mapping minimizes the average processor workload variance. To prove
this result we assume that the covariance function decrenses linearly across the entire domain: Cou(s) =
o?(1 = as), for some & satisfying 0 € « < 2. The result is based on a procedure that takes any assignment
and constructs another whose sum of processor workload variances is no larger. The rapeated application of
this procedure produces a modular assignment. Consequently, modular aesigninents minimize the average
processor workload variance.

The arguments to follow specify individual covariance terms. These arguments are clearer using the
Covlei(n), cj(n)] notation rather than ¢(|j—il,n). Itisstraightforward to determine the form of Covei(n), ¢;(n))

under the present assumptions:

Zn—alj-il) iflj=il>0

S3(n - a/3) if]j—il=0 s)

Cov[ci(n),cj(n)) = {
11




Let Ay be any assignment matrix describing a balanced assignment. Without loss of generelity, we
assume that under Ay the processors are numbered so that Py is sssigned co(n), Py iz assigned the smallest
indexed ci(n) that i not assigned to Py, and in gencral Py is assigned the smallest indexed cluster that is
not assigned to any of Po, Pyovves Pyuy.

We will say that ¢j(n) is in place (it is assigned to processor Py med p. Note that all clusters are in place
under a modular assignment. \We construct another balanced assigninent A3 by finding the smallest indexed
ci(n) that is not in place, and by putting it in place. Let ¢y denote this cluster, let Ps denote the sowrce
processor that has c; under A;, and let Pr denote the target processor Py med p. Let ¢y be the smallest
indexed cluster assigned to #4 such that g > f. Aj is constructed from Ay by giving ¢y to Pr, and ¢, to Ps.
Figure 3 ilustrates these definitions. \We will prove that the sumn of processor variances under Az bounds
that sum under A; from below; consequently the average workload variance under Ay is no gecater than
that under A;.

Recall that under any assignment matrix A the varisnce of Py's work load is given by

Vorlli(An)) = (AcdA"),
= E Varle;(n)) + 2 Coules(n)ycx(n))s (16)
¢stn)eAli) <eg{n)icaln)> €A(N)xA(i)
and that
Coufly(A,n), Lj(A,n)) = 3 Coulex(n) em(n))

<cu.¢~>€-‘(‘)¥¢‘(i)
It is clear from (16) that the variance of any processor other than Ps or Pr is by unaffected by swapping ¢;

and ¢,. To prove the desired result we nced only show that the swap does not increase the sum of Pr and
Ps variances. The change in processor variances caused by the swap is entirely due to changes in the sum of
cluster covariance (cc) terms in each processor. After swapping ¢; and ¢y, each cluster ¢;(n) assigned to Ps
loses the cc term Cou[ey(n), ci(n)) and gains the term Covley(n),ci(n)). We let Ar denote the sum of all
such changes among clusters in Ps to the left of ¢7, and let Ls denote the number of such clusters. Similarly
A pg denotes the sum of changes among clusters in Ps to the right of ¢, and Rs denotes the number of such
clusters; Ay, denotes the sum of changes among clusters in Ps with indices between / and g. Expressions
for these quantities are derived using equation (15):

o2
Ap, = Z (Covley(n), ci(n)) ~ Covley(n), ci(n)]) = —F(y - f)Lsa;

€ (R)€A(5)
i</

Are= 3 (Cosfey(nhes(m] = Covfes(n).cs(m) = Zxlo - )Rses

c;(n)€EA(S)
i>e
2
o
Bus= D, (Covley(n),cu(n)] - Covfes(n), cx(n)]) = e Y, @k-f-g).
) (n)EAS(S) ex(n)€A5(S)
J<k<s J<k<y

12




‘The change in Ps’s variance after the swap is the swin &g, + Ay, + Apy,e
\We can similarly deseribe the change in Pp's variance with the definitions

Ape = Z (Covles(n),ci(n)) - Cou(c,(n).c;(ﬂ)])-—-(g - Nira;

ﬁ("}?}:tﬂ

Ape= Y. (Covles(n)cs(n)) = Coufey(n), cy(n)) -'-—(g NRza.
2;8AUT)
>3

No term snalogons to Ay, i3 necessary since there are no clusters in P with indizes between f and .

The change in the sum of Ps's varinnce with Pp's variance is given by the sum of all the A terms
defined above. We will show that the sum of A tering is bounded from above by 0. At this point a number of
observations are useful. Since all ¢j(n) with i < f are in order, it follows that Lop £ Iis. Thus &g, +810 £ 0.
It remains to show that Agy + App + Ayry 0. \We know that

2
Apg +App = ‘%S(RT - Rs)(g = f)o (17)

furthermore, sinee n/P = Ly Rp-+1, we niust also have Rg € Ry, We proceed to show that the magnitude
of Ayy, is no greater than the magnitude of (17) and consequently prove the larger result,

W= nfP = Ls=—Rs=1is the number of clusters in Ps whose indices lie strictly between f and 9. Ay,
is maximized when the indices of these alusters are as large as possible; when k=g =1,9=2,....4-m.
With such indices, the sum of ¢,'s cc terms in Ps is

= z:(u - i a).

Likewise, the sum of ¢;'s cc terns in P is

1 m

= lo=/ =ile)

From this, we see that Ayre when maximized can be written as

Ms = ’: z;(n —i-a)~ —Z(n ~(g—=S—i)a)= —m(g N
i= i=1

But note that

m n/P—Ls—-Rsg~1
nfP=Lp—Rs—1
(n/P~ Ly — Ry - 1)+ (Rr - Rs)

(Rr — Rs),

n A i

U

13




so that .
Ang+ e+ Buty = S5 (~(Rr = Re)g = o+ (9 = £)0) S 0.

Consequently, swapping ¢y and ¢, does not increase the sum of Ps and Pr's variance. Furthermere, the
swap does not affuct the sum of other processors' variances. Repeatedly applying this preceduze puts every
cluster in place, which is the modular assignment. This discussion has proved the following theorem.

Theovem 4 Let {IV()) be o second-onder stationary process, with a cevariance function Cou(s) = o%(1 =~
as), where 0 € a € 2 Lel P oand n be given such that P divides n cvenly, end let Ay b¢ the P x n
assignment motnz describing the modular mapping. Then for any P X n assignment malriz A descriding a
balanced assignment,

=] Py
(/P) Y (Aot AT )i £ (1/P) 3 (A2 AN
(1] ind

In the event that the workload process is Gaussian and stationary, we can show that increasing the degree
reduces the expected maximum processor worklond. We determine the processor variance and covariunce
under scatter decomposition by substituting the values given by (15) into (5) and (i}, Assume that i < j.
Working through the algebra one determines that

Var{L(n)) = o* (l —a/d + ot - l,P)) '

P2 dn?

and that

PT T 3n? T T Pn?
‘The derivative with respect to n of C{L(n), Lj(n)}/Var{L(n)) is positive if

Cov[Li(n), Lj(n)) = o° (-‘-2-9-/-3- . (-’:-'-)ﬁ) :

(4/3 = 20/3)(7 — i) + 26/9 = 2/3 > 0.,

This is always true over th~ range a € [0,2]. Consequently the same arguments used to prove Theerem 3
can be applied here,

3 Summary

Scatter decomposition is an attractive method for mapping domain-oriented computations with irregular
workloads to parallel architectuces. Scatter decomposition partitions the domain into n equal-size piecef,
and maps them modularly onto P processors. This paper uses a formal probabilistic model of correlated
workload in a one-dimensional domain to explain why and when scatter decomposition works. First, we

show that periodicity in workload correlation can lead to load imbalance under scatter decomposition if the
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correlation period aligns with the period of the modular mapping. Consequently we consider nonperiadic
workload correlation functions.

Our first result shows that if workload correlation i3 a convex function of distance, then scattering with
increasingly finer grained clusters decreases a processor’s workload variance, thereby increasing the average
nter-processor workload correlation. Sinee the processor workload menn is unaffected by this chiange, one
anticipates that the expected maximum workload will correspondingly decrease.

Our second result affirms this intuition under a stronger set of assumptions: the workload process is
Gaussian, and the correlation function decreases lineacly in distance until it reaches zero and then stays at
zero. We then show that once a ecatter decomposition is sulliciently fine-grained, making the grain-size finer
reduces the expected maximum processor workload,

Our third result shows that under slightly different assumptions still, among all possible “balanced”
mappings seatter decomposition minimizes the average processor workload variance. This result depends on
the correlation function decreasing lineatly across the entire domain, In this case it is also true that if tha
workload process is Gaussian, then scattering a finer-grained decomposition reduces the expected maximum
processor worklosd,

These analytic results serve to formally verify the intuition behind scatter decomposition. However,
the results only concern load balance. The additional communication cost of decreasing granularity is
not built into this model. Extensions to this work might find the optimal granularity by determining
a quantitative estimator of the expected maximum workload and the expected communication cost as a
function of granularity. An overall execution time model wouid be constracted depending on the influence

of architecture on the communication costs, and then optimized.
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